class: center, middle, inverse, title-slide # Predicting Violent Conflict in Africa ## Leveraging Open Geodata and Deep Learning for Spatio-Temporal Event Detection ### Darius A. Görgen ### B.Sc. Geography, University of Marburg ### 2021-05-05 --- # Content .pull-left[ Introduction -- Methodology -- Main Findings -- Discussion -- Conclusion -- ] .pull-right[ ] --- class: inverse, center, middle # Introduction --- # Introduction .pull-left[ - violent conflicts impede social and economical development and put environmental resources at risk - we observe complex non-linear relationships with natural resources, e.g. food production (see [Koren, 2018](https://doi.org/10.1093/ajae/aax106) and [Buhaug et al., 2015](https://doi.org/10.1088/1748-9326/10/12/125015)) - research activities on violent conflicts are found between inferential statistics and prediction models (see [Ward et al, 2010](https://doi.org/10.1177/0022343309356491)) - environmental variables as predictors are barley found despite a public focus on environmental change and its consequences - on the African continent violent conflict seems to be on the rise during the 21st millennium ] <br> <br> <br> .pull-right[ ![:scale 90%](assets/01-intro-conflicts-1.svg) ] --- class: inverse, center, middle # Research question --- # Research question <br> *Does a modern deep learning framework and the vast availability of open geodata positively impact the task of spatio-temporal conflict detection?* <br> -- - **H1**: Environmental predictors increase the performance of deep learning models for the conflict prediction task over models based solely on the conflict history and structural variables. -- - **H2**: Aggregating predictor and response variables on the basis of sub-basin watersheds delivers better predictive performance than aggregating on sub-national administrative districts. --- class: inverse, center, middle # Methodology --- # Methodology ## (1) Spatio-Temporal Aggregation .pull-left[ - collection of 40 predictors (2001 - 2019) in spatially explicit formats - spatio-temporal aggregation on two units of analysis (_adm_ and _bas_) and 4 spatial buffers (0, 50, 100, 200 km) - temporal split of training, validation, and testing data sets (2001 - 2016, 2017 - 2018, 2019) - splitting into 3 predictor sets: Conflict History (CH), Structural Variables (SV), and Environmental Variables (EV) > `\(X_t^L= x_t^1,x_{t+1}^1...,x_{t-N+1}^1,...\ ..., x_t^L,...,x_{t-N+1}^L\)` ] .pull-right[ <img src = "assets/wf.svg", width = 70%, height = 70%, style = "position:absolute; top: 20%; left: 45%;"></img> ] --- # Methodology ## (2) Response Variable & Bayesian Optimization .pull-left[ - binary encoding of response variable (3 conflict classes + 1 combined class) - Bayesian optimization of CNN-LSTM Hyperparameters based on combined conflict class (**cb**) - 100 random trials + 100 optimization trials for all combinations of *aggregation units* **per** *predictor sets* > `\(x_{t} = arg \;\underset{x}{max} \, u(x|D_{1:t-1})\)` ] .pull-right[ <img src = "assets/wf.svg", width = 70%, height = 70%, style = "position:absolute; top: 20%; left: 45%;"></img> ] --- # Methodology ## (3) Model training .pull-left[ - neural networks are initiated with parameters from BO - simple logistic regression on the most complex predictor set for baseline reference - training is repeated 10 times for each combination of *aggregation units* **x** *predictor sets* **x** *outcome classes* = 280 models ] .pull-right[ <img src = "assets/wf.svg", width = 70%, height = 70%, style = "position:absolute; top: 20%; left: 45%;"></img> ] --- # Methodology ## (4) Testing .pull-left[ - performance is logged based on the testing set for each model - performance is logged for each month in a 12 month prediction horizon - Metrics: F2-score, AUC, AUPR, Precision, Sensitivity, Specificity > `\(F_\beta = (1+\beta^2)\frac{Precision*Sensitivity}{\beta^2*Precision+Sensitivity}\)` - ANOVA: - aggregation unit (*adm*, *bas*) - conflict class (**cb**, **sb**, **ns**, **os**) - logistic regression + predictor sets (LR, CH, SV, EV) ] .pull-right[ <img src = "assets/wf.svg", width = 70%, height = 70%, style = "position:absolute; top: 20%; left: 45%;"></img> ] --- class: inverse, center, middle # Results --- # Results ## Global Performance .center[ ![](assets/04-results-global-f2-1.svg) ] --- # Results ## Temporal Performance .center[ ![](assets/04-results-time-f2-1.svg) ] --- # Results ## Spatial Performance - *adm* .center[ <img src="presentation_files/figure-html/map-adm-1.png" style="display: block; margin: auto;" /> ] --- # Results ## Spatial Performance - *bas* .center[ <img src="presentation_files/figure-html/map-bas-1.png" style="display: block; margin: auto;" /> ] --- # Results ## ANOVA .pull-left[ <table class="table table" style="margin-left: auto; margin-right: auto; font-size: 12px; margin-left: auto; margin-right: auto;border-bottom: 0;"> <caption style="font-size: initial !important;">Results of the Welch-James ANOVA.</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">cb</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">sb</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">ns</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">os</div></th> </tr> <tr> <th style="text-align:left;"> Term </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Sig. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Sig. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Sig. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Sig. </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> unit </td> <td style="text-align:left;"> 0.00e+00 </td> <td style="text-align:left;"> *** </td> <td style="text-align:left;"> 1.77e-03 </td> <td style="text-align:left;"> ** </td> <td style="text-align:left;"> 3.65e-01 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 2.41e-08 </td> <td style="text-align:left;"> *** </td> </tr> <tr> <td style="text-align:left;"> type </td> <td style="text-align:left;"> 0.00e+00 </td> <td style="text-align:left;"> *** </td> <td style="text-align:left;"> 0.00e+00 </td> <td style="text-align:left;"> *** </td> <td style="text-align:left;"> 0.00e+00 </td> <td style="text-align:left;"> *** </td> <td style="text-align:left;"> 0.00e+00 </td> <td style="text-align:left;"> *** </td> </tr> <tr> <td style="text-align:left;"> unit:type </td> <td style="text-align:left;"> 3.77e-05 </td> <td style="text-align:left;"> *** </td> <td style="text-align:left;"> 2.70e-03 </td> <td style="text-align:left;"> ** </td> <td style="text-align:left;"> 1.89e-02 </td> <td style="text-align:left;"> * </td> <td style="text-align:left;"> 6.70e-04 </td> <td style="text-align:left;"> *** </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <span style="font-style: italic;">General:</span> <sup></sup> The significance level is indicated according to: *p <= 0.05, **p <= 0.01, ***p <= 0.001</td></tr></tfoot> </table> - assumption of equal variance for Fisher's ANOVA is violated - Welch's ANOVA does not assume equal variance - interaction terms are significant for all outcome variables <br> → focus on interaction terms ] .pull-right[ <img src = "assets/appendix-anova-qq-1.svg", width = 33%, height = 33%, style = "position:absolute; top: 20%; left: 60%;"></img> <img src = "assets/appendix-anova-resid-1.svg", width = 33%, height = 33%, style = "position:absolute; top: 55%; left: 60%;"></img> ] --- # Results ## ANOVA - regarding **H1**: - for *adm* districts, no significant difference from CH to EV set is observed for any outcome variable - for *bas* districts a significant difference from the CH to the EV theme is observed for the **cb** outcome variable accounting for 7.2 points in F2-score - for *bas* districts and **sb** and **os** outcome variables, the difference is not significant (p-value ~ 0.1), the estimate is about 4.6 to 4.9 points in F2-score - regarding **H2**: - *bas* districts consistently show significant higher estimates than *adm* districts except for the **ns** outcome variable in a range between 3.7 to 9.9 points in F2-score --- class: inverse, center, middle # Discussion --- # Discussion - subtle balance between a model's precision and sensitivity <br> - trade-off between spatial detail and predictive performance <br> - unfamiliarity by non-experts with watershed boundaries <br> - conflict types and modes currently not fully included <br> - focus on predictors available in gridded data sets <br> - observed differences might be due to subtle changes in DL architectures --- class: inverse, center, middle # Conclusion --- # Conclusion - DL and open geodata can contribute to the conflict prediction task <br> - environmental variables aggregated on watershed levels seem to increase performance <br> - availability of data on both sides of the equation is increasing <br> - predictive analysis enhances scientific understanding and adds value to ongoing conflict prevention efforts --- # Main references .font90[ - Colaresi & Mahmood 2017. Do the robot: Lessons from machine learning to improve conflict forecasting. Journal of Peace Research 54, 193–214. [https://doi.org/10.1177/0022343316682065](https://doi.org/10.1177/0022343316682065) - Collier & Hoeffler 1998. On economic causes of civil war. Oxford Economic Papers 50, 563–573. [https://doi.org/10.1093/oep/50.4.563](https://doi.org/10.1093/oep/50.4.563) - Fearon & Laitin 2003. Ethnicity, Insurgency, and Civil War. American Political Science Review 97, 75–90. [https://doi.org/10.1017/S0003055403000534](https://doi.org/10.1017/S0003055403000534) - Halkia et al. 2020. The Global Conflict Risk Index: A quantitative tool for policy support on conflict prevention. Progress in Disaster Science 6, 100069. [https://doi.org/10.1016/j.pdisas.2020.100069](https://doi.org/10.1016/j.pdisas.2020.100069) - Hegre et al. 2019. ViEWS: A political violence early-warning system. Journal of Peace Research 56, 155–174. [https://doi.org/10.1177/0022343319823860](https://doi.org/10.1177/0022343319823860) - Homer-Dixon 1994. Environmental Scarcities and Violent Conflict: Evidence from Cases. International Security 19, 5. [https://doi.org/10.2307/2539147](https://doi.org/10.2307/2539147) - Kuzma et al. 2020. Leveraging Water Data in a Machine Learning-Based Model for Forecasting Violent Conflict. Technical note. [WWW Document]. URL [https://www.wri.org/publication/leveraging-water-data](https://www.wri.org/publication/leveraging-water-data ) - Sachs & Warner 1995. Natural Resource Abundance and Economic Growth. National Bureau of Economic Research. [https://doi.org/10.3386/w5398](https://doi.org/10.3386/w5398) - Ward et al 2010. The perils of policy by p-value: Predicting civil conflicts. Journal of Peace Research 47, 363–375. [https://doi.org/10.1177/0022343309356491](https://doi.org/10.1177/0022343309356491) - Yu et al. 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation 31, 1235–1270. [https://doi.org/10.1162/neco_a_01199](https://doi.org/10.1162/neco_a_01199) ] --- class: inverse, center, middle # Extra Slides --- # CNN .center[ ![:scale 50%](assets/03-methods-cnn-1.svg) `\(X^l_\beta = \sigma \Big( \sum\limits^L_{i=1} X^{l-1}_i \cdot k^l_{i\beta} + b^l_{i\beta} \Big)\)` ] --- # LSTM .center[ <figure> <img src = "assets/img/LSTM.png", width = 50%, height = 50%></img> <a href="https://doi.org/10.1162/neco_a_01199"> <figcaption>Source: Yu et al. (2019)</figcaption> </a> </figure> $$ `\begin{split} f(t) = \sigma (W_{fh} h_{t-1} + W_{fx}x_t + b_f) \\ i(t) = \sigma (W_{ih} h_{t-1} + W_{ix}x_t + b_i) \\ \widetilde{c}(t) = tanh(W_{\widetilde{c}h} h_{t-1} + W_{\widetilde{c}x}x_t + b_{\widetilde{c}}) \\ c(t) = f(t) \cdot c_{t-1} + i(t) \cdot \widetilde{c}_t \\ o(t) = \sigma (W_{oh} h_{t-1} + W_{ox}x_t + b_0) \\ h_t = o_t \cdot tanh(c_t) \end{split}` $$ ] --- # Network Structure <img src = "assets/03-methods-arch-1.svg", width = 75%, height = 75%, style = "position:absolute; top: 15%; left: -10%;"></img> <img src = "assets/03-methods-fc-1.svg", width = 60%, height = 60%, style = "position:absolute; top: 22%; left: 45%;"></img> --- # Predictors .pull-left[ <table class="table" style="font-size: 10px; margin-left: auto; margin-right: auto;"> <caption style="font-size: initial !important;">Spatio-temporal properties of predictor variables.</caption> <thead> <tr> <th style="text-align:left;"> Name </th> <th style="text-align:center;"> Spatial Resolution </th> <th style="text-align:center;"> Temporal Resolution </th> <th style="text-align:center;"> Unit </th> <th style="text-align:left;"> Aggregation </th> </tr> </thead> <tbody> <tr grouplength="1"><td colspan="5" style="border-bottom: 1px solid;"><strong>Baseline</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Conflict history </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> binary </td> <td style="text-align:left;"> - </td> </tr> <tr grouplength="14"><td colspan="5" style="border-bottom: 1px solid;"><strong>Structural</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Terrain Ruggedness Index (log) </td> <td style="text-align:center;"> 0.0008° </td> <td style="text-align:center;"> static </td> <td style="text-align:center;"> m </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Travel time (log) </td> <td style="text-align:center;"> 0.008° </td> <td style="text-align:center;"> static </td> <td style="text-align:center;"> minutes </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Livestock (log) </td> <td style="text-align:center;"> 0.08° </td> <td style="text-align:center;"> static </td> <td style="text-align:center;"> 2010 heads </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Population (log) </td> <td style="text-align:center;"> 0.008° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> persons </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Youth bulge </td> <td style="text-align:center;"> 0.008° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Dependency ratio </td> <td style="text-align:center;"> 0.008° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> GDP (log) </td> <td style="text-align:center;"> 0.08° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> 2011 USD </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Cropland </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Forest cover </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Builtup area </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Grassland </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Shrubland </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Barren land </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Water bodies </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> yearly </td> <td style="text-align:center;"> % </td> <td style="text-align:left;"> sum </td> </tr> </tbody> </table> ] .pull-right[ <table class="table" style="font-size: 10px; margin-left: auto; margin-right: auto;border-bottom: 0;"> <caption style="font-size: initial !important;">Spatio-temporal properties of predictor variables. (cont.)</caption> <thead> <tr> <th style="text-align:left;"> Name </th> <th style="text-align:center;"> Spatial Resolution </th> <th style="text-align:center;"> Temporal Resolution </th> <th style="text-align:center;"> Unit </th> <th style="text-align:left;"> Aggregation </th> </tr> </thead> <tbody> <tr grouplength="14"><td colspan="5" style="border-bottom: 1px solid;"><strong>Environmental</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Precipitation </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> mm </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Precipitation anomaly </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> mm </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> SPI </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> - </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> SPEI </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> - </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Land Surface Temperature </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> K </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Evapotranspiration </td> <td style="text-align:center;"> 0.01° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> kg/m² </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Gross Primary Productivity </td> <td style="text-align:center;"> 0.01° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> kg C/m² </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Precipitatation agr. </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> mm </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Precipitation anonmaly agr. </td> <td style="text-align:center;"> 0.05 </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> mm </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> SPI agr. </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> - </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> SPEI agr. </td> <td style="text-align:center;"> 0.05° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> - </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Land Surface Temperature agr. </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> K </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Evapotranspiration agr. </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> kg/m² </td> <td style="text-align:left;"> mean </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Gross Primary Productivity agr. </td> <td style="text-align:center;"> 0.005° </td> <td style="text-align:center;"> monthly </td> <td style="text-align:center;"> kg C/m² </td> <td style="text-align:left;"> mean </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <span style="font-style: italic;">General:</span> <sup></sup> Variables denoted with agr. were calculated by a multiplicative interaction with a binary cropland mask.</td></tr></tfoot> </table> ] --- # Bayesian Optimization <table class="table" style="font-size: 7px; margin-left: auto; margin-right: auto;border-bottom: 0;"> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Conflict History (CH)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Structural Variables (SV)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Environmental Variables (EV)</div></th> </tr> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">adm</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">bas</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">adm</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">bas</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">adm</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-style: italic; " colspan="1"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">bas</div></th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> `\(double\_cnn\)` </td> <td style="text-align:center;"> Yes/Yes/Yes/Yes </td> <td style="text-align:center;"> Yes/Yes/Yes/Yes </td> <td style="text-align:center;"> Yes/Yes/Yes/Yes </td> <td style="text-align:center;"> No/No/No/No </td> <td style="text-align:center;"> Yes/Yes/Yes/Yes </td> <td style="text-align:center;"> Yes/Yes/Yes/Yes </td> </tr> <tr> <td style="text-align:left;"> `\(a_{cnn}\)` </td> <td style="text-align:center;"> softsign/hard_sigmoid/softsign/softmax </td> <td style="text-align:center;"> softsign/hard_sigmoid/sigmoid/softsign </td> <td style="text-align:center;"> softmax/softmax/hard_sigmoid/softmax </td> <td style="text-align:center;"> sigmoid/softplus/softplus/softmax </td> <td style="text-align:center;"> hard_sigmoid/softmax/hard_sigmoid/hard_sigmoid </td> <td style="text-align:center;"> softmax/softmax/hard_sigmoid/softmax </td> </tr> <tr> <td style="text-align:left;"> `\(k_{cnn}\)` </td> <td style="text-align:center;"> 106/125/45/78 </td> <td style="text-align:center;"> 86/99/39/128 </td> <td style="text-align:center;"> 95/70/63/42 </td> <td style="text-align:center;"> 41/102/67/43 </td> <td style="text-align:center;"> 19/41/94/99 </td> <td style="text-align:center;"> 92/76/66/42 </td> </tr> <tr> <td style="text-align:left;"> `\(\beta_{cnn}\)` </td> <td style="text-align:center;"> 5/10/22/8 </td> <td style="text-align:center;"> 19/24/24/6 </td> <td style="text-align:center;"> 10/9/9/16 </td> <td style="text-align:center;"> 22/12/14/5 </td> <td style="text-align:center;"> 12/6/13/14 </td> <td style="text-align:center;"> 8/10/10/17 </td> </tr> <tr> <td style="text-align:left;"> `\(pool_1\)` </td> <td style="text-align:center;"> `\(max/max/avg./max\)` </td> <td style="text-align:center;"> `\(avg./max/max/max\)` </td> <td style="text-align:center;"> `\(max/avg./avg./max\)` </td> <td style="text-align:center;"> `\(avg./max/avg./avg.\)` </td> <td style="text-align:center;"> `\(max/avg./max/avg.\)` </td> <td style="text-align:center;"> `\(max/avg./avg./max\)` </td> </tr> <tr> <td style="text-align:left;"> `\(pool\_size\)` </td> <td style="text-align:center;"> 15/23/3/14 </td> <td style="text-align:center;"> 24/19/10/21 </td> <td style="text-align:center;"> 12/18/17/18 </td> <td style="text-align:center;"> 16/6/10/9 </td> <td style="text-align:center;"> 12/16/9/22 </td> <td style="text-align:center;"> 12/18/17/16 </td> </tr> <tr> <td style="text-align:left;"> `\(pool_2\)` </td> <td style="text-align:center;"> `\(max/max/max/avg.\)` </td> <td style="text-align:center;"> `\(max/max/avg./avg.\)` </td> <td style="text-align:center;"> `\(max/max/max/avg.\)` </td> <td style="text-align:center;"> `\(max/max/avg./max\)` </td> <td style="text-align:center;"> `\(max/max/max/avg.\)` </td> <td style="text-align:center;"> `\(max/max/max/avg.\)` </td> </tr> <tr> <td style="text-align:left;"> `\(lstm\_layers\)` </td> <td style="text-align:center;"> 2/2/2/2 </td> <td style="text-align:center;"> 3/3/3/3 </td> <td style="text-align:center;"> 2/2/2/2 </td> <td style="text-align:center;"> 2/2/2/2 </td> <td style="text-align:center;"> 3/3/3/3 </td> <td style="text-align:center;"> 2/2/2/2 </td> </tr> <tr> <td style="text-align:left;"> `\(n_1\)` </td> <td style="text-align:center;"> 114/83/114/106 </td> <td style="text-align:center;"> 97/12/12/78 </td> <td style="text-align:center;"> 109/128/43/23 </td> <td style="text-align:center;"> 23/59/38/92 </td> <td style="text-align:center;"> 88/28/85/122 </td> <td style="text-align:center;"> 107/127/38/18 </td> </tr> <tr> <td style="text-align:left;"> `\(d_1\)` </td> <td style="text-align:center;"> 0.22/0.08/0.14/0.49 </td> <td style="text-align:center;"> 0.23/0.2/0.38/0.25 </td> <td style="text-align:center;"> 0.02/0.09/0.07/0.06 </td> <td style="text-align:center;"> 0.22/0.14/0.02/0.2 </td> <td style="text-align:center;"> 0.2/0.1/0.09/0.31 </td> <td style="text-align:center;"> 0.02/0.07/0.05/0.06 </td> </tr> <tr> <td style="text-align:left;"> `\(n_2\)` </td> <td style="text-align:center;"> 79/53/62/123 </td> <td style="text-align:center;"> 128/34/84/65 </td> <td style="text-align:center;"> 83/82/128/21 </td> <td style="text-align:center;"> 37/114/83/56 </td> <td style="text-align:center;"> 111/19/13/104 </td> <td style="text-align:center;"> 76/80/128/21 </td> </tr> <tr> <td style="text-align:left;"> `\(d_2\)` </td> <td style="text-align:center;"> 0.05/0.28/0.37/0.08 </td> <td style="text-align:center;"> 0.5/0.24/0.05/0.16 </td> <td style="text-align:center;"> 0.34/0.03/0/0.29 </td> <td style="text-align:center;"> 0.26/0.12/0.46/0.47 </td> <td style="text-align:center;"> 0.23/0.04/0.09/0.49 </td> <td style="text-align:center;"> 0.34/0.02/0.01/0.31 </td> </tr> <tr> <td style="text-align:left;"> `\(n_3\)` </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> 85/92/96/57 </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> 54/109/106/13 </td> <td style="text-align:center;"> -/-/-/- </td> </tr> <tr> <td style="text-align:left;"> `\(d_3\)` </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> 0.437/0.231/0.255/0.172 </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> -/-/-/- </td> <td style="text-align:center;"> 0.202/0.477/0.284/0.285 </td> <td style="text-align:center;"> -/-/-/- </td> </tr> <tr> <td style="text-align:left;"> `\(a_{dense}\)` </td> <td style="text-align:center;"> `\(softplus\)` </td> <td style="text-align:center;"> `\(elu\)` </td> <td style="text-align:center;"> `\(relu\)` </td> <td style="text-align:center;"> `\(softplus\)` </td> <td style="text-align:center;"> `\(selu\)` </td> <td style="text-align:center;"> `\(relu\)` </td> </tr> <tr> <td style="text-align:left;"> `\(n_{dense}\)` </td> <td style="text-align:center;"> 21 </td> <td style="text-align:center;"> 97 </td> <td style="text-align:center;"> 32 </td> <td style="text-align:center;"> 38 </td> <td style="text-align:center;"> 95 </td> <td style="text-align:center;"> 29 </td> </tr> <tr> <td style="text-align:left;"> `\(a_{out}\)` </td> <td style="text-align:center;"> `\(sigmoid\)` </td> <td style="text-align:center;"> `\(sigmoid\)` </td> <td style="text-align:center;"> `\(sigmoid\)` </td> <td style="text-align:center;"> `\(sigmoid\)` </td> <td style="text-align:center;"> `\(sigmoid\)` </td> <td style="text-align:center;"> `\(hard\_sigmoid\)` </td> </tr> <tr> <td style="text-align:left;"> `\(\pi\)` </td> <td style="text-align:center;"> 0.4529 </td> <td style="text-align:center;"> 0.6534 </td> <td style="text-align:center;"> 0.2404 </td> <td style="text-align:center;"> 0.3856 </td> <td style="text-align:center;"> 0.5697 </td> <td style="text-align:center;"> 0.275 </td> </tr> <tr> <td style="text-align:left;"> `\(\alpha\)` </td> <td style="text-align:center;"> 0.9245 </td> <td style="text-align:center;"> 0.7928 </td> <td style="text-align:center;"> 0.8056 </td> <td style="text-align:center;"> 0.9087 </td> <td style="text-align:center;"> 0.722 </td> <td style="text-align:center;"> 0.8544 </td> </tr> <tr> <td style="text-align:left;"> `\(\gamma\)` </td> <td style="text-align:center;"> 6.2896 </td> <td style="text-align:center;"> 5.8844 </td> <td style="text-align:center;"> 7.8011 </td> <td style="text-align:center;"> 1.1974 </td> <td style="text-align:center;"> 4.8053 </td> <td style="text-align:center;"> 8.1588 </td> </tr> <tr> <td style="text-align:left;"> `\(opti\)` </td> <td style="text-align:center;"> `\(adagrad\)` </td> <td style="text-align:center;"> `\(adam\)` </td> <td style="text-align:center;"> `\(adamax\)` </td> <td style="text-align:center;"> `\(adagrad\)` </td> <td style="text-align:center;"> `\(adamax\)` </td> <td style="text-align:center;"> `\(adamax\)` </td> </tr> <tr> <td style="text-align:left;"> `\(lr\)` </td> <td style="text-align:center;"> 0.0244 </td> <td style="text-align:center;"> 0.0116 </td> <td style="text-align:center;"> 0.0246 </td> <td style="text-align:center;"> 0.0258 </td> <td style="text-align:center;"> 0.0117 </td> <td style="text-align:center;"> 0.0226 </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <span style="font-style: italic;">General:</span> <sup></sup> Multiple values indicate the results for the input branch of buffer size 0/50/100/200 km, respecitvley.</td></tr></tfoot> </table> --- # ANOVA <table class="table" style="font-size: 8px; margin-left: auto; margin-right: auto;border-bottom: 0;"> <caption style="font-size: initial !important;">Results of the Games-Howell test for difference in mean values.</caption> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">cb</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">sb</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">ns</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">os</div></th> </tr> <tr> <th style="text-align:left;"> Contrast </th> <th style="text-align:left;"> Est. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Est. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Est. </th> <th style="text-align:left;"> p </th> <th style="text-align:left;"> Est. </th> <th style="text-align:left;"> p </th> </tr> </thead> <tbody> <tr grouplength="4"><td colspan="9" style="border-bottom: 1px solid;"><strong>EV:LR</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:adm </td> <td style="text-align:left;"> 0.29299 </td> <td style="text-align:left;"> 2.4e-10*** </td> <td style="text-align:left;"> 0.40543 </td> <td style="text-align:left;"> 4.6e-10*** </td> <td style="text-align:left;"> 0.25543 </td> <td style="text-align:left;"> 7.1e-08*** </td> <td style="text-align:left;"> 0.28137 </td> <td style="text-align:left;"> 1.4e-10*** </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:bas </td> <td style="text-align:left;"> 0.22865 </td> <td style="text-align:left;"> 3.1e-10*** </td> <td style="text-align:left;"> 0.34574 </td> <td style="text-align:left;"> 7.9e-10*** </td> <td style="text-align:left;"> 0.22216 </td> <td style="text-align:left;"> 3.0e-07*** </td> <td style="text-align:left;"> 0.22065 </td> <td style="text-align:left;"> 0.0e+00*** </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:adm </td> <td style="text-align:left;"> 0.36458 </td> <td style="text-align:left;"> 9.9e-12*** </td> <td style="text-align:left;"> 0.42837 </td> <td style="text-align:left;"> 3.4e-10*** </td> <td style="text-align:left;"> 0.30397 </td> <td style="text-align:left;"> 3.7e-10*** </td> <td style="text-align:left;"> 0.32709 </td> <td style="text-align:left;"> 2.2e-10*** </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:bas </td> <td style="text-align:left;"> 0.30024 </td> <td style="text-align:left;"> 9.4e-11*** </td> <td style="text-align:left;"> 0.36869 </td> <td style="text-align:left;"> 3.9e-10*** </td> <td style="text-align:left;"> 0.27070 </td> <td style="text-align:left;"> 3.1e-10*** </td> <td style="text-align:left;"> 0.26636 </td> <td style="text-align:left;"> 5.3e-11*** </td> </tr> <tr grouplength="4"><td colspan="9" style="border-bottom: 1px solid;"><strong>EV:CH</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:adm </td> <td style="text-align:left;"> 0.02770 </td> <td style="text-align:left;"> 1.2e-01 </td> <td style="text-align:left;"> 0.04354 </td> <td style="text-align:left;"> 2.1e-01 </td> <td style="text-align:left;"> -0.02863 </td> <td style="text-align:left;"> 7.7e-01 </td> <td style="text-align:left;"> 0.02135 </td> <td style="text-align:left;"> 2.1e-01 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:bas </td> <td style="text-align:left;"> -0.04619 </td> <td style="text-align:left;"> 4.9e-06*** </td> <td style="text-align:left;"> 0.04032 </td> <td style="text-align:left;"> 8.4e-01 </td> <td style="text-align:left;"> 0.06320 </td> <td style="text-align:left;"> 6.6e-01 </td> <td style="text-align:left;"> 0.00803 </td> <td style="text-align:left;"> 1.0e+00 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:adm </td> <td style="text-align:left;"> 0.09929 </td> <td style="text-align:left;"> 7.8e-06*** </td> <td style="text-align:left;"> 0.06649 </td> <td style="text-align:left;"> 1.6e-02* </td> <td style="text-align:left;"> 0.01991 </td> <td style="text-align:left;"> 8.6e-01 </td> <td style="text-align:left;"> 0.06706 </td> <td style="text-align:left;"> 1.6e-05*** </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:bas </td> <td style="text-align:left;"> 0.02540 </td> <td style="text-align:left;"> 3.0e-03** </td> <td style="text-align:left;"> 0.06327 </td> <td style="text-align:left;"> 4.1e-01 </td> <td style="text-align:left;"> 0.11175 </td> <td style="text-align:left;"> 1.1e-01 </td> <td style="text-align:left;"> 0.05374 </td> <td style="text-align:left;"> 2.5e-02* </td> </tr> <tr grouplength="4"><td colspan="9" style="border-bottom: 1px solid;"><strong>EV:SV</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:adm </td> <td style="text-align:left;"> 0.00130 </td> <td style="text-align:left;"> 1.0e+00 </td> <td style="text-align:left;"> 0.01441 </td> <td style="text-align:left;"> 8.7e-01 </td> <td style="text-align:left;"> 0.04002 </td> <td style="text-align:left;"> 8.6e-01 </td> <td style="text-align:left;"> 0.01428 </td> <td style="text-align:left;"> 7.6e-01 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> adm:bas </td> <td style="text-align:left;"> -0.03179 </td> <td style="text-align:left;"> 5.5e-04*** </td> <td style="text-align:left;"> -0.02382 </td> <td style="text-align:left;"> 4.8e-01 </td> <td style="text-align:left;"> -0.01401 </td> <td style="text-align:left;"> 9.6e-01 </td> <td style="text-align:left;"> -0.01023 </td> <td style="text-align:left;"> 9.8e-01 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:adm </td> <td style="text-align:left;"> 0.07289 </td> <td style="text-align:left;"> 2.0e-11*** </td> <td style="text-align:left;"> 0.03736 </td> <td style="text-align:left;"> 1.9e-02* </td> <td style="text-align:left;"> 0.08856 </td> <td style="text-align:left;"> 1.1e-01 </td> <td style="text-align:left;"> 0.06000 </td> <td style="text-align:left;"> 3.4e-04*** </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:bas </td> <td style="text-align:left;"> 0.03980 </td> <td style="text-align:left;"> 5.9e-05*** </td> <td style="text-align:left;"> -0.00087 </td> <td style="text-align:left;"> 1.0e+00 </td> <td style="text-align:left;"> 0.03453 </td> <td style="text-align:left;"> 1.0e-02* </td> <td style="text-align:left;"> 0.03549 </td> <td style="text-align:left;"> 1.1e-01 </td> </tr> <tr grouplength="1"><td colspan="9" style="border-bottom: 1px solid;"><strong>EV:EV</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> bas:adm </td> <td style="text-align:left;"> 0.07159 </td> <td style="text-align:left;"> 3.4e-11*** </td> <td style="text-align:left;"> 0.02295 </td> <td style="text-align:left;"> 4.0e-01 </td> <td style="text-align:left;"> 0.04854 </td> <td style="text-align:left;"> 4.0e-02* </td> <td style="text-align:left;"> 0.04571 </td> <td style="text-align:left;"> 8.7e-06*** </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <span style="font-style: italic;">General:</span> <sup></sup> Contrasts are indicated by ":" reading as the left-hand side compared to the right-hand side. Est. indicates the difference in mean, p indicates the p value with significance level according to: *p <= 0.05, **p <= 0.01, ***p <= 0.001</td></tr></tfoot> </table>